By Topic

Kruskal's permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models with constant modulus constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tao Jiang ; Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA ; N. D. Sidiropoulos

CANDECOMP/PARAFAC (CP) analysis is an extension of low-rank matrix decomposition to higher-way arrays, which are also referred to as tensors. CP extends and unifies several array signal processing tools and has found applications ranging from multidimensional harmonic retrieval and angle-carrier estimation to blind multiuser detection. The uniqueness of CP decomposition is not fully understood yet, despite its theoretical and practical significance. Toward this end, we first revisit Kruskal's permutation lemma, which is a cornerstone result in the area, using an accessible basic linear algebra and induction approach. The new proof highlights the nature and limits of the identification process. We then derive two equivalent necessary and sufficient uniqueness conditions for the case where one of the component matrices involved in the decomposition is full column rank. These new conditions explain a curious example provided recently in a previous paper by Sidiropoulos, who showed that Kruskal's condition is in general sufficient but not necessary for uniqueness and that uniqueness depends on the particular joint pattern of zeros in the (possibly pretransformed) component matrices. As another interesting application of the permutation lemma, we derive a similar necessary and sufficient condition for unique bilinear factorization under constant modulus (CM) constraints, thus providing an interesting link to (and unification with) CP.

Published in:

IEEE Transactions on Signal Processing  (Volume:52 ,  Issue: 9 )