By Topic

An accurate algebraic solution for moving source location using TDOA and FDOA measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ho, K.C. ; Dept. of Electr. & Comput. Eng., Univ. of Missouri, Columbia, MO, USA ; Wenwei Xu

This paper proposes an algebraic solution for the position and velocity of a moving source using the time differences of arrival (TDOAs) and frequency differences of arrival (FDOAs) of a signal received at a number of receivers. The method employs several weighted least-squares minimizations only and does not require initial solution guesses to obtain a location estimate. It does not have the initialization and local convergence problem as in the conventional linear iterative method. The estimated accuracy of the source position and velocity is shown to achieve the Crame´r-Rao lower bound for Gaussian TDOA and FDOA noise at moderate noise level before the thresholding effect occurs. Simulations are included to examine the algorithm's performance and compare it with the Taylor-series iterative method.

Published in:

Signal Processing, IEEE Transactions on  (Volume:52 ,  Issue: 9 )