By Topic

Low-complexity nonlinear least squares carrier offset estimator for OFDM: identifiability, diversity and performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tureli, U. ; Dept. of Electr. & Comput. Eng., Stevens Inst. of Technol. Hoboken, NJ, USA ; Honan, P.J. ; Hui Liu

Orthogonal frequency division multiplexing (OFDM) transforms frequency-selective channels into multiple low-rate flat-fading subchannels. Carrier frequency offset between transmitter and receiver local oscillators must be estimated and compensated at the receiver to maintain orthogonality of these subchannels. In this paper, we derive the nonlinear least squares (NLS) estimator for carrier frequency synchronization that exploits receiver diversity and known OFDM signal subspace structure due to the placement of unmodulated (virtual) subcarriers. The resulting estimator benefits from the high-resolution subspace method without the computational overhead associated with subspace decomposition. Fundamental estimator performance relationships against parameters such as signal-to-noise ratio (SNR), frequency-selective fading, and diversity branch correlation are derived. In particular, we derive the Cramer-Rao bound (CRB) for the mean square error (MSE) of the carrier frequency offset estimator. Numerical studies are presented to verify the results.

Published in:

Signal Processing, IEEE Transactions on  (Volume:52 ,  Issue: 9 )