By Topic

Hyperspectral data compression using a fast vector quantization algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Shen-En Qian ; Canadian Space Agency, St.-Hubert, Canada

A fast vector quantization algorithm for data compression of hyperspectral imagery is proposed in this paper. It makes use of the fact that in the full search of the generalized Lloyd algorithm (GLA) a training vector does not require a search to find the minimum distance partition if its distance to the partition is improved in the current iteration compared to that of the previous iteration. The proposed method has the advantage of being simple, producing a large computation time saving and yielding compression fidelity as good as the GLA. Four hyperspectral data cubes covering a wide variety of scene types were tested. The loss of spectral information due to compression was evaluated using the spectral angle mapper and a remote sensing application.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:42 ,  Issue: 8 )