By Topic

Electrostatic actuation of three-dimensional MEMS mirrors using sidewall electrodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Chuan Pu ; Tellium Inc., Oceanport, NJ, USA ; Sangtae Park ; Chu, P.B. ; Lee, C.D.
more authors

We propose and demonstrate electrostatic sidewall-electrodes actuation of three-dimensional (3-D) microelectromechanical systems (MEMS) gimbal mirrors. The linearity of the mirror angle dependence on actuation voltage is improved with the sidewall-electrodes actuation. In addition, the undesired spring-softening effect commonly found in electrostatic actuation, where the mirror resonance frequency decreases with increased tilt angle, is significantly reduced. Sidewall actuation enables superior performance of 3-D MEMS mirrors including large pull-in angles, reduced actuation voltages, improved device reliability, and fast switching times.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:10 ,  Issue: 3 )