By Topic

Learning to visualise high-dimensional data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ahmad, K. ; Dept. of Comput., Surrey Univ., Guildford, UK ; Vrusias, B.

Visualisation techniques focus on reducing high dimensional data to a low dimensional surface or a cube. Similar dimensional reduction is attempted in the so-called 'self-organising maps'. A number of techniques have been developed to visualise categories learnt by these maps through and exemplified by the term sequential clustering. An evaluation of the techniques is presented using the learning capability of the self-organising maps as a baseline for building systems that learn to visualise complex data.

Published in:

Information Visualisation, 2004. IV 2004. Proceedings. Eighth International Conference on

Date of Conference:

14-16 July 2004