By Topic

A robust loaded reiterative median cascaded canceller

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Picciolo, M.L. ; SAIC, Chantilly, VA, USA ; Gerlach, K.

A robust, fast-converging, reduced-rank adaptive processor is introduced, based on diagonally loading the reiterative median cascaded canceller (RMCC). The new loaded reiterative median cascaded canceller (LRMCC) exhibits the highly desirable combination of: (1) convergence-robustness to outliers/targets/nonstationary data in adaptive weight training data, like the RMCC; (2) convergence performance that is approximately independent of the interference-plus-noise covariance matrix, like the RMCC; and (3) fast convergence at a rate commensurate with reduced-rank algorithms, unlike the RMCC. Measured airborne radar data from the MCARM space-time adaptive processing (STAP) database is used to show performance enhancements. It is concluded that the LRMCC is a practical and highly robust replacement for existing reduced-rank adaptive processors, exhibiting superior performance in nonideal measured data environments.

Published in:

Radar Conference, 2004. Proceedings of the IEEE

Date of Conference:

26-29 April 2004