Cart (Loading....) | Create Account
Close category search window
 

Synchroscalar: a multiple clock domain, power-aware, tile-based embedded processor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Oliver, J. ; California Univ., Davis, CA, USA ; Rao, R. ; Sultana, P. ; Crandall, J.
more authors

We present Synchroscalar, a tile-based architecture for embedded processing that is designed to provide the flexibility of DSPs while approaching the power efficiency of ASICs. We achieve this goal by providing high parallelism and voltage scaling while minimizing control and communication costs. Specifically, Synchroscalar uses columns of processor tiles organized into statically-assigned frequency-voltage domains to minimize power consumption. Furthermore, while columns use SIMD control to minimize overhead, data-dependent computations can be supported by extremely flexible statically-scheduled communication between columns. We provide a detailed evaluation of Synchroscalar including SPICE simulation, wire and device models, synthesis of key components, cycle-level simulation, and compiler- and hand-optimized signal processing applications. We find that the goal of meeting, not exceeding, performance targets with data-parallel applications leads to designs that depart significantly from our intuitions derived from general-purpose microprocessor design. In particular, synchronous design and substantial global interconnect are desirable in the low-frequency, low-power domain. This global interconnect supports parallelization and reduces processor idle time, which are critical to energy efficient implementations of high bandwidth signal processing. Overall, Synchroscalar provides programmability while achieving power efficiencies within 8-30× of known ASIC implementations, which is 10-60× better than conventional DSPs. In addition, frequency-voltage scaling in Synchroscalar provides between 3-32% power savings in our application suite.

Published in:

Computer Architecture, 2004. Proceedings. 31st Annual International Symposium on

Date of Conference:

19-23 June 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.