By Topic

The vector-thread architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
R. Krashinsky ; Comput. Sci. & Artificial Intelligence Lab., MIT, Cambridge, MA, USA ; C. Batten ; M. Hampton ; S. Gerding
more authors

The vector-thread (VT) architectural paradigm unifies the vector and multithreaded compute models. The VT abstraction provides the programmer with a control processor and a vector of virtual processors (VPs). The control processor can use vector-fetch commands to broadcast instructions to all the VPs or each VP can use thread-fetches to direct its own control flow. A seamless intermixing of the vector and threaded control mechanisms allows a VT architecture to flexibly and compactly encode application parallelism and locality, and a VT machine exploits these to improve performance and efficiency. We present SCALE, an instantiation of the VT architecture designed for low-power and high-performance embedded systems. We evaluate the SCALE prototype design using detailed simulation of a broad range of embedded applications and show that its performance is competitive with larger and more complex processors.

Published in:

Computer Architecture, 2004. Proceedings. 31st Annual International Symposium on

Date of Conference:

19-23 June 2004