Cart (Loading....) | Create Account
Close category search window
 

Passive alignment method of polymer PLC devices by using a hot embossing technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jin Tae Kim ; Basic Res. Lab., Electron. & Telecommun. Res. Inst., Daejeon, South Korea ; Yoon, Keun Byoung ; Choi, Choon-Gi

A novel fabrication process using a hot embossing technique has been developed for micromechanical passive alignment of polymer planar lightwave circuit (PLC) devices. With only one step of embossing, single-mode waveguide straight channels and micropedestals for passive aligning are simultaneously defined on a polymer thin film with an accuracy of ±0.5 μm. This process reduces the steps for fabricating alignment structures. A fabricated polymer PLC chip and fibers are combined on a v-grooved silicon optical bench (SiOB) in a flip-chip manner. The process provides a coupling loss as low as 0.67 dB per coupling face and a cost-effective packaging solution for various polymer PLC devices.

Published in:

Photonics Technology Letters, IEEE  (Volume:16 ,  Issue: 7 )

Date of Publication:

July 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.