By Topic

Joint space-time trellis decoding and channel estimation in correlated fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nguyen, V.K. ; Sch. of Eng. & Technol., Deakin Univ., Geelong, Vic., Australia ; White, L.B.

This letter addresses the issue of joint space-time trellis decoding and channel estimation in time-varying fading channels that are spatially and temporally correlated. A recursive space-time receiver which incorporates per-survivor processing (PSP) and Kalman filtering into the Viterbi algorithm is proposed. This approach generalizes existing work to the correlated fading channel case. The channel time-evolution is modeled by a multichannel autoregressive process, and a bank of Kalman filters is used to track the channel variations. Computer simulation results show that a performance close to the maximum likelihood receiver with perfect channel state information (CSI) can be obtained. The effects of the spatial correlation on the performance of a receiver that assumes independent fading channels are examined.

Published in:

Signal Processing Letters, IEEE  (Volume:11 ,  Issue: 7 )