By Topic

Grasping-force optimization for multifingered robotic hands using a recurrent neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Youshen Xia ; Dept. of Autom. & Comput.-Aided Eng., Chinese Univ. of Hong Kong, China ; Jun Wang ; Lo-Ming Fok

Grasping-force optimization of multifingered robotic hands can be formulated as a problem for minimizing an objective function subject to form-closure constraints and balance constraints of external force. This paper presents a novel recurrent neural network for real-time dextrous hand-grasping force optimization. The proposed neural network is shown to be globally convergent to the optimal grasping force. Compared with existing approaches to grasping-force optimization, the proposed neural-network approach has the advantages that the complexity for implementation is reduced, and the solution accuracy is increased, by avoiding the linearization of quadratic friction constraints. Simulation results show that the proposed neural network can achieve optimal grasping force in real time.

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:20 ,  Issue: 3 )