By Topic

A comparison of subspace methods for accurate position measurement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fortuna, J. ; Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, Ont., Canada ; Quick, P. ; Capson, D.

A comparison of the accuracy of visual position measurement in four common subspaces is presented. Principal component analysis (PCA), independent component analysis (ICA), kernel principal component analysis (KPCA) and Fisher's linear discriminant (FLD) are examined for their ability to discriminate positions in a 2D visual subspace. The comparison was done with both constant and varying illumination and random occlusion. It is shown that PCA provides very good overall performance compared with more sophisticated techniques such as ICA, FLD, and KPCA, at a reduced computational complexity.

Published in:

Image Analysis and Interpretation, 2004. 6th IEEE Southwest Symposium on

Date of Conference:

28-30 March 2004