By Topic

Long wires and asynchronous control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ron Ho ; Sun Microsystems Res. Labs., Mountain View, CA, USA ; J. Gainsley ; R. Drost

As integrated circuit technologies get smaller, circuit and architectural trends make transmitting data across long on-chip wires increasingly important yet increasingly expensive in both latency and throughput. Inserting repeaters can reduce latency by breaking up long wires with gain stages but offers only limited throughput improvement, while breaking long wires with clocked latches improves latency and throughput but requires generating fast local clocks. In contrast, asynchronous handshaking over long wires can improve both latency and bandwidth with lower control overhead. We introduce simple latency models that relate best stage separation to technology parameters. In addition, the transactional nature of handshaking presents a fundamental limitation on throughput exacerbated by long wires. We present twin request/acknowledge control scheme that overcomes this throughput cost.

Published in:

Asynchronous Circuits and Systems, 2004. Proceedings. 10th International Symposium on

Date of Conference:

19-23 April 2004