By Topic

Interleaved orthogonal frequency division multiplexing (IOFDM) system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Prasad, V.G.S. ; Emuzed India Pvt. Ltd., Bangalore, India ; Hari, K.V.S.

In orthogonal frequency division multiplexing (OFDM) systems, for every block of K data samples, an overhead of L samples of cyclic prefix (CP) or zero padding (ZP) is added to combat frequency selective channels. The code rate, which is defined as the ratio K/(K+L), is a measure of the efficiency of transmitting user information. In this paper, a new system is proposed to increase the code rate without increasing the number of subcarriers and without increasing the bandwidth. The proposed system considers appending the L zeros (ZP) once for every P blocks of data samples, which would increase the code rate to PK/(PK+L). It is assumed that the channel is not varying over the transmission of P consecutive data blocks. In order to recover the P data blocks in a computationally efficient manner, an interleaving scheme is proposed, and the proposed system is called the interleaved OFDM (IOFDM) system. Various issues such as computational complexity, peak-to-average power ratio (PAPR), and the effect of synchronization errors on the performance of the IOFDM system are also presented. Based on a numerical simulation study, the average bit-error-rate (BER) performance of the IOFDM system is shown to be very close to that of the OFDM system for a moderate increase in computational complexity and delay.

Published in:

Signal Processing, IEEE Transactions on  (Volume:52 ,  Issue: 6 )