By Topic

Adaptive blind deconvolution of linear channels using Renyi's entropy with Parzen window estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
D. Erdogmus ; Electr. & Comput. Eng. Dept., Univ. of Florida, Gainesville, FL, USA ; K. E. Hild ; J. C. Principe ; M. Lazaro
more authors

Blind deconvolution of linear channels is a fundamental signal processing problem that has immediate extensions to multiple-channel applications. In this paper, we investigate the suitability of a class of Parzen-window-based entropy estimates, namely Renyi's entropy, as a criterion for blind deconvolution of linear channels. Comparisons between maximum and minimum entropy approaches, as well as the effect of entropy order, equalizer length, sample size, and measurement noise on performance, will be investigated through Monte Carlo simulations. The results indicate that this nonparametric entropy estimation approach outperforms the standard Bell-Sejnowski and normalized kurtosis algorithms in blind deconvolution. In addition, the solutions using Shannon's entropy were not optimal either for super- or sub-Gaussian source densities.

Published in:

IEEE Transactions on Signal Processing  (Volume:52 ,  Issue: 6 )