By Topic

Modeling switched-reluctance Machines by decomposition of double magnetic saliencies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Salmasi, F.R. ; Electro Stand. Labs., Cranston, RI, USA ; Fahimi, B.

This paper presents a novel analytical model for a switched-reluctance machine (SRM) based on decomposition of its inherent double joint magnetic saliencies due to rotor and stator salient poles and saturation of magnetic field at high stator currents. With this method, the magnetic characteristics of the motor, such as flux linkage and incremental inductance, are decomposed to vector functions of rotor position and phase current. Dynamic state and torque equations for the SRM are derived on the basis of this representation. The proposed model is appropriate for online identification and for sensorless position control algorithms. It is easy to implement and computationally efficient. Comparison of the predicted motor magnetic characteristics to machine data from finite-element analysis verifies the accuracy of the model.

Published in:

Magnetics, IEEE Transactions on  (Volume:40 ,  Issue: 3 )