By Topic

Wide baseline image registration with application to 3-D face modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. K. Roy-Chowdhury ; Center for Autom. Res., Univ. of Maryland, College Park, MD, USA ; R. Chellappa ; T. Keaton

Establishing correspondence between features in two images of the same scene taken from different viewing angles is a challenging problem in image processing and computer vision. However, its solution is an important step in many applications like wide baseline stereo, three-dimensional (3-D) model alignment, creation of panoramic views, etc. In this paper, we propose a technique for registration of two images of a face obtained from different viewing angles. We show that prior information about the general characteristics of a face obtained from video sequences of different faces can be used to design a robust correspondence algorithm. The method works by matching two-dimensional (2-D) shapes of the different features of the face (e.g., eyes, nose etc.). A doubly stochastic matrix, representing the probability of match between the features, is derived using the Sinkhorn normalization procedure. The final correspondence is obtained by minimizing the probability of error of a match between the entire constellation of features in the two sets, thus taking into account the global spatial configuration of the features. The method is applied for creating holistic 3-D models of a face from partial representations. Although this paper focuses primarily on faces, the algorithm can also be used for other objects with small modifications.

Published in:

IEEE Transactions on Multimedia  (Volume:6 ,  Issue: 3 )