By Topic

Coping with Java threads

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Sanden, B. ; Dept. of Comput. Sci., Colorado Tech. Univ., Colorado Springs, CO, USA

A thread is a basic unit of program execution that can share a single address space with other threads - that is, they can read and write the same variables and data structures. Originally, only assembly programmers used threads. A few older programming languages such as PL/I supported thread concurrency, but newer languages such as C and C++ use libraries instead. Only recently have programming languages again begun to build in direct support for threads. Java and Ada are examples of industry-strength languages for multithreading. The Java thread model has its roots in traditional concurrent programming. As the "real-time specification for Java" sidebar describes, RTSJ attempts to remove some of the limitations relative to real-time applications - primarily by circumventing garbage collection. But RTSJ does not make the language safer. It retains standard Java's threading pitfalls and is a risky candidate for critical concurrent applications.

Published in:

Computer  (Volume:37 ,  Issue: 4 )