By Topic

Source localization by enforcing sparsity through a Laplacian prior: an SVD-based approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
D. M. Malioutov ; Lab. for Inf. & Decision Syst., Massachusetts Inst. of Technol., Cambridge, MA, USA ; M. Cetin ; A. S. Willsky

We present a source localization method based upon a sparse representation of sensor measurements with an overcomplete basis composed of samples from the array manifold. We enforce sparsity by imposing an ℓ1-norm penalty; this can also be viewed as an estimation problem with a Laplacian prior. Explicitly enforcing the sparsity of the representation is motivated by a desire to obtain a sharp estimate of the spatial spectrum which exhibits superresolution. To summarize multiple time samples we use the singular value decomposition (SVD) of the data matrix. Our formulation leads to an optimization problem, which we solve efficiently in a second-order cone (SOC) programming framework by an interior point implementation. We demonstrate the effectiveness of the method on simulated data by plots of spatial spectra and by comparing the estimator variance to the Cramer-Rao bound (CRB). We observe that our approach has advantages over other source localization techniques including increased resolution; improved robustness to noise, limitations in data quantity, and correlation of the sources; as well as not requiring an accurate initialization.

Published in:

Statistical Signal Processing, 2003 IEEE Workshop on

Date of Conference:

28 Sept.-1 Oct. 2003