Cart (Loading....) | Create Account
Close category search window
 

Spatially adaptive high-resolution image reconstruction of DCT-based compressed images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sung Cheol Park ; Dept. of Electr. & Electron. Eng., Yonsei Univ., Seoul, South Korea ; Moon Gi Kang ; Segall, C.A. ; Katsaggelos, A.K.

The problem of recovering a high-resolution image from a sequence of low-resolution DCT-based compressed observations is considered in this paper. The introduction of compression complicates the recovery problem. We analyze the DCT quantization noise and propose to model it in the spatial domain as a colored Gaussian process. This allows us to estimate the quantization noise at low bit-rates without explicit knowledge of the original image frame, and we propose a method that simultaneously estimates the quantization noise along with the high-resolution data. We also incorporate a nonstationary image prior model to address blocking and ringing artifacts while still preserving edges. To facilitate the simultaneous estimate, we employ a regularization functional to determine the regularization parameter without any prior knowledge of the reconstruction procedure. The smoothing functional to be minimized is then formulated to have a global minimizer in spite of its nonlinearity by enforcing convergence and convexity requirements. Experiments illustrate the benefit of the proposed method when compared to traditional high-resolution image reconstruction methods. Quantitative and qualitative comparisons are provided.

Published in:

Image Processing, IEEE Transactions on  (Volume:13 ,  Issue: 4 )

Date of Publication:

April 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.