By Topic

Reducing overfitting in genetic programming models for software quality classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yi Liu ; Math. & Comput. Sci. Dept., Georgia Coll. & State Univ., Milledgeville, GA, USA ; T. Khoshgoftaar

A high-assurance system is largely dependent on the quality of its underlying software. Software quality models can provide timely estimations of software quality, allowing the detection and correction of faults prior to operations. A software metrics-based quality prediction model may depict overfitting, which occurs when a prediction model has good accuracy on the training data but relatively poor accuracy on the test data. We present an approach to address the overfitting problem in the context of software quality classification models based on genetic programming (GP). The problem has not been addressed in depth for GP-based models. The presence of overfitting in a software quality classification model affects its practical usefulness, because management is interested in good performance of the model when applied to unseen software modules, i.e., generalization performance. In the process of building GP-based software quality classification models for a high-assurance telecommunications system, we observed that the GP models were prone to overfitting. We utilize a random sampling technique to reduce overfitting in our GP models. The approach has been found by many researchers as an effective method for reducing the time of a GP run. However, in our study we utilize random to reduce overfitting with the aim of improving the generalization capability of our GP models.

Published in:

High Assurance Systems Engineering, 2004. Proceedings. Eighth IEEE International Symposium on

Date of Conference:

25-26 March 2004