By Topic

Temperature effects on polymer-carbon composite sensors: Evaluating the role of polymer molecular weight and carbon loading

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Homer, M.L. ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA ; Lim, J.R. ; Manatt, K. ; Kisor, A.
more authors

We report the effect of temperature coupled with varying polymer molecular weight and carbon loadings on the performance of polymer-carbon black composite films, used as sensing media in the JPL Electronic Nose (ENose). While bulk electrical properties of polymer composites have been studied, with mechanisms of conductivity described by connectivity and tunneling, it is not fully understood how environmental conditions and intrinsic polymer and filler properties affect polymer composite sensor characteristics and responses. Composites of polyethylene oxide (PEO)-carbon black (CB) considered here include PEO polymers with molecular weights of 20K, 600 K and 1M. The effects of polymer molecular weight on the percolation threshold of PEO-carbon composite and incremental sensor temperature effects on PEO-carbon sensor response were investigated. Results show a correlation between the polymer molecular weight and percolation threshold. Changes in sensor properties as a function of temperature are also observed at different carbon loadings; these changes may be explained by a change in conduction mechanism.

Published in:

Sensors, 2003. Proceedings of IEEE  (Volume:2 )

Date of Conference:

22-24 Oct. 2003