By Topic

A new concept of voltage-collapse protection based on local phasors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Verbic, G. ; Fac. of Electr. Eng., Univ. of Ljubljana, Slovenia ; Gubina, F.

A new algorithm for protection against voltage collapse is proposed. The algorithm makes use of the magnitudes and angles of the local phasors (i.e., bus voltages and load currents). The change in an apparent power-line flow during a time interval is exploited for computing the voltage-collapse criterion. The criterion is based on the fact that the line losses in the vicinity of the voltage collapse increase faster than the delivery of the apparent power and, at the voltage-collapse point, the losses consume all of the increased power. The selected criterion equals 0 when a voltage collapse occurs. The proposed algorithm could be easily implemented in a numerical relay. The information obtained by the relay can be used at two levels-for the coordinated system-wide control action or for automatic action on the local level. The algorithm is simple and computationally very fast. It was tested on the IEEE 118-bus test system.

Published in:

Power Delivery, IEEE Transactions on  (Volume:19 ,  Issue: 2 )