Cart (Loading....) | Create Account
Close category search window
 

Fabrication of 3-D gelatin-patterned glass substrates with layer-by-layer and lift-off (LbL-LO) technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mengyan Li ; Biomed. Eng. Dept., Louisiana Tech Univ., Ruston, LA, USA ; Kondabatni, K.K. ; Tianhong Cui ; McShane, M.J.

The assembly of multilayer films of gelatin onto glass substrates using layer-by-layer and lift-off (LbL-LO) technology to modify the surface topography and chemistry properties of in vitro cell culture scaffolds is described. The ability to generate such nanoscale systems containing cell-adhesive materials on optically transparent substrates with microscale lateral dimensions, nanoscale vertical dimensions, molecular vertical precision, and flexibility in material selection has important implications for tissue engineering, drug discovery, and basic research in cell biology. Toward this goal, a systematic study on the electrostatic adsorption properties of fluorescein 5-isothiocyanate-gelatin B (FITC-gelatin) was completed. In addition, the integration of protein nanoassembly with microlithographic feature definition was used to pattern three-dimensional FITC-gelatin nanofilms on planar glass substrates. The experimental results indicate that FITC-gelatin is negatively charged at pH 9 and can be alternately assembled with a positively charged polyion, poly(diallyldimethylammonium chloride) (PDDA), to form multilayer films on solid templates with thickness of 5-10 nm per bilayer. Furthermore, images of protein/polymer nanocomposites indicate that LbL-LO is an efficient way to realize the designed substrates. These findings will benefit future research on cell culture and tissue engineering that require methods of generating protein patterns to fabricate novel in vitro cell culture systems.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:3 ,  Issue: 1 )

Date of Publication:

March 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.