By Topic

Cyclostationary crosstalk suppression by decision feedback equalization on digital subscriber loops

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Abdulrahman, M. ; Dept. of Syst. & Comput. Eng., Carleton Univ., Ottawa, Ont., Canada ; Falconer, D.D.

Interference from digital signals in multipair cables has been shown to be cyclostationary under some conditions. This work evaluates the performance of a decision feedback equalizer (DFE) in the presence of cyclostationary interference (CI), intersymbol interference (ISI), and additive white noise (AWN). A comparison between a DFE with CI and one with stationary interference (SI) shows the ability of the DFE to substantially suppress CI. Fractionally spaced and symbol-rate DFE equalizers are also compared and the former is found to yield better performance, especially in the presence of CI. The use of a symbol-rate DFE using an adaptive timing technique that finds the receiver's best sampling phase is proposed for when the fractionally spaced DFE cannot be used because of its complexity. The results also demonstrate the potential benefits of synchronizing central office transmitter clocks, if a fractionally spaced DFE is used at the receiver

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:10 ,  Issue: 3 )