Cart (Loading....) | Create Account
Close category search window
 

Modeling and control for smart Mesoflap aeroelastic control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tharayil, M.L. ; Univ. of Illinois, Urbana, IL, USA ; Alleyne, A.G.

This paper introduces a novel concept termed Smart Mesoflaps for Aeroelastic Recirculation Transpiration (SMART) to render mass and momentum transfer for controlling shock/boundary-layer interactions in supersonic jet inlets. The SMART concept consists of a matrix of small flaps designed to undergo local aeroelastic deflection to achieve proper mass bleed or injection when subjected to shock loads. To optimize the performance of this system, NiTi shape memory alloy is used as an actuator for the flaps to control the amount of recirculation. The focus of this paper will be the subsystem modeling and control of a single flap. After a relatively detailed model is developed, a simpler model is generated, and it is experimentally shown that this approximation is adequate for control purposes. Next, the control strategy for this subsystem, subject to hysteresis and actuator saturation, is presented. A basic proportional integral derivative (PID) controller is enhanced using a hysteresis compensator (HC) and an error governor (EG). A generalized error governing scheme for PID controllers to compensate for actuator saturations is also developed. This EG method is generalizable to any stable process controlled by a PID. Finally, the PID with HC and the error governing method is experimentally applied to a benchtop SMART subsystem.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:9 ,  Issue: 1 )

Date of Publication:

March 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.