By Topic

Advanced data preprocessing for intersites Web usage mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. Tanasa ; AxIS Project Team, INRIA, Sophia Antipolis, France ; B. Trousse

Web usage mining applies data mining procedures to analyze user access of Web sites. As with any KDD (knowledge discovery and data mining) process, WUM contains three main steps: preprocessing, knowledge extraction, and results analysis. We focus on data preprocessing, a fastidious, complex process. Analysts aim to determine the exact list of users who accessed the Web site and to reconstitute user sessions-the sequence of actions each user performed on the Web site. Intersites WUM deals with Web server logs from several Web sites, generally belonging to the same organization. Thus, analysts must reassemble the users' path through all the different Web servers that they visited. Our solution is to join all the log files and reconstitute the visit. Classical data preprocessing involves three steps: data fusion, data cleaning, and data structuration. Our solution for WUM adds what we call advanced data preprocessing. This consists of a data summarization step, which will allow the analyst to select only the information of interest. We've successfully tested our solution in an experiment with log files from INRIA Web sites.

Published in:

IEEE Intelligent Systems  (Volume:19 ,  Issue: 2 )