By Topic

Adaptive, integrated sensor processing to compensate for drift and uncertainty: a stochastic 'neural' approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tang, T.B. ; Sch. of Eng. & Electron., Univ. of Edinburgh, UK ; Chen, H. ; Murray, A.F.

An adaptive stochastic classifier based on a simple, novel neural architecture - the Continuous Restricted Boltzmann Machine (CRBM) is demonstrated. Together with sensors and signal conditioning circuits, the classifier is capable of measuring and classifying (with high accuracy) the H+ ion concentration, in the presence of both random noise and sensor drift. Training on-line, the stochastic classifier is able to overcome significant drift of real incomplete sensor data dynamically. As analogue hardware, this signal-level sensor fusion scheme is therefore suitable for real-time analysis in a miniaturised multisensor microsystem such as a Lab-in-a-Pill (LIAP).

Published in:

Nanobiotechnology, IEE Proceedings -  (Volume:151 ,  Issue: 1 )