Cart (Loading....) | Create Account
Close category search window
 

Aerosol properties over bright-reflecting source regions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hsu, N.C. ; Goddard Earth Sci. & Technol. Center, Univ. of Maryland, Baltimore, MD, USA ; Si-Chee Tsay ; King, M.D. ; Herman, J.R.

Retrieving aerosol properties from satellite remote sensing over a bright surface is a challenging problem in the research of atmospheric and land applications. In this paper we propose a new approach to retrieve aerosol properties over surfaces such as arid, semiarid, and urban areas, where the surface reflectance is usually very bright in the red part of visible spectrum and in the near infrared, but is much darker in the blue spectral region (i.e., wavelength <500 nm). In order to infer atmospheric properties from these data, a global surface reflectance database of 0.1° latitude by 0.1° longitude resolution was constructed over bright surfaces for visible wavelengths using the minimum reflectivity technique (e.g., finding the clearest scene during each season for a given location). The aerosol optical thickness and aerosol type are then determined simultaneously in the algorithm using lookup tables to match the satellite observed spectral radiances. Examples of aerosol optical thickness derived using this algorithm over the Sahara Desert and Arabian Peninsula reveal various dust sources, which are important contributors to airborne dust transported over long distances. Comparisons of the satellite inferred aerosol optical thickness and the values from ground-based Aerosol Robotic Network (AERONET) sun/sky radiometer measurements indicate good agreement (i.e., within 30%) over the sites in Nigeria and Saudi Arabia. This new algorithm, when applied to Moderate Resolution Imaging Spectroradiometer (MODIS), Sea-viewing Wide Field of view Sensor (SeaWiFS), and Global Imager (GLI) satellite data, will provide high spatial resolution (∼1 km) global information of aerosol optical thickness over bright surfaces on a daily basis.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:42 ,  Issue: 3 )

Date of Publication:

March 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.