By Topic

A vision-based approach to early detection of drowning incidents in swimming pools

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wenmiao Lu ; Dept. of Electr. Eng., Stanford Univ., CA, USA ; Yap-Peng Tan

We present in this paper a vision-based approach to detection of drowning incidents in swimming pools at the earliest possible stage. The proposed approach consists of two main parts: a vision component which can reliably detect and track swimmers in spite of large scene variations of monitored pool areas, and an event-inference module which parses observation sequences of swimmer features for possible drowning behavioral signs. The vision component employs a model-based approach to represent and differentiate the background pool areas and foreground swimmers. The event-inference module is constructed based on a finite state machine, which integrates several reasoning rules formulated from universal motion characteristics of drowning swimmers. Possible drowning incidents are quickly detected using a sequential change detection algorithm. We have applied the proposed approach to a number of video clips of simulated drowning and obtained promising results as reported in this paper.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:14 ,  Issue: 2 )