By Topic

Fusion of static and dynamic body biometrics for gait recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Liang Wang ; Nat. Lab. of Pattern Recognition, Chinese Acad. of Sci., Beijing, China ; Huazhong Ning ; Tieniu Tan ; Weiming Hu

Vision-based human identification at a distance has recently gained growing interest from computer vision researchers. This paper describes a human recognition algorithm by combining static and dynamic body biometrics. For each sequence involving a walker, temporal pose changes of the segmented moving silhouettes are represented as an associated sequence of complex vector configurations and are then analyzed using the Procrustes shape analysis method to obtain a compact appearance representation, called static information of body. In addition, a model-based approach is presented under a Condensation framework to track the walker and to further recover joint-angle trajectories of lower limbs, called dynamic information of gait. Both static and dynamic cues obtained from walking video may be independently used for recognition using the nearest exemplar classifier. They are fused on the decision level using different combinations of rules to improve the performance of both identification and verification. Experimental results of a dataset including 20 subjects demonstrate the feasibility of the proposed algorithm.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:14 ,  Issue: 2 )