Cart (Loading....) | Create Account
Close category search window
 

A novel excitation scheme for a stand-alone three-phase induction generator supplying single-phase loads

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chan, T.F. ; Dept. of Electr. Eng., Hong Kong Polytech. Univ., China ; Lai, L.L.

This paper presents the operating principle and steady-state analysis of a novel excitation scheme for a stand-alone three-phase induction generator that supplies single-phase loads. The phase windings and excitation capacitances are arranged in the form of the Smith connection and the excitation scheme is referred to as the SMSEIG. In addition to providing the reactive power for self-excitation, the capacitances also act as phase balancers. With this novel excitation scheme, isolated single-phase loads can be supplied with good phase balance in the induction machine, resulting in high efficiency, large power output, and quiet machine operation. Performance analysis is based on the method of symmetrical components, from which the input impedance of the generator can be determined. Numerical solution of a simplified equivalent circuit for the machine variables, namely the excitation frequency and magnetizing reactance, enables the generator performance to be evaluated for any load and speed. With the aid of a phasor diagram, the conditions for achieving perfect phase balance are deduced and a method to compute the capacitances required is developed. Experimental investigations on a 2.2-kW induction machine confirm the feasibility of the SMSEIG.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:19 ,  Issue: 1 )

Date of Publication:

March 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.