By Topic

Torque ripple analysis of a PM brushless DC motor using finite element method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Min Dai ; Dept. of Electr. Eng., Ohio State Univ., Columbus, OH, USA ; A. Keyhani ; T. Sebastian

Three-phase permanent magnet brushless DC motors are widely used. As a function of the rotor position, the torque produced by these machines has a pulsating component in addition to the DC component. This pulsating torque has a fundamental frequency corresponding to six pulses per electrical revolution of the motor. The shape of the torque waveform and, thus, the frequency content of the waveform can be influenced by several factors in the motor design and construction. This paper addresses the various factors that influence the torque waveshape. It is shown that in addition to the basic induced electromotive force (EMF) waveshape, the magnetic saturation in the stator core, and the accuracy in the skewing are also key factors in determining the torque waveshape. Computer simulation using finite element technique has been conducted to study the torque waveform. Simulation results successfully duplicated the torque waveforms measured in experiments under different excitation currents.

Published in:

IEEE Transactions on Energy Conversion  (Volume:19 ,  Issue: 1 )