By Topic

EVCLUS: evidential clustering of proximity data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Denoeux, T. ; UMR CNRS Heudiasyc, Univ. Technol. de Compiegne, France ; Masson, M.-H.

A new relational clustering method is introduced, based on the Dempster-Shafer theory of belief functions (or evidence theory). Given a matrix of dissimilarities between n objects, this method, referred to as evidential clustering (EVCLUS), assigns a basic belief assignment (or mass function) to each object in such a way that the degree of conflict between the masses given to any two objects reflects their dissimilarity. A notion of credal partition is introduced, which subsumes those of hard, fuzzy, and possibilistic partitions, allowing to gain deeper insight into the structure of the data. Experiments with several sets of real data demonstrate the good performances of the proposed method as compared with several state-of-the-art relational clustering techniques.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:34 ,  Issue: 1 )