By Topic

Using manipulability to bias sampling during the construction of probabilistic roadmaps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
P. Leven ; Hewlett-Packard, San Diego, CA, USA ; S. Hutchinson

Probabilistic roadmaps (PRMs) are a popular representation used by many current path planners. Construction of a PRM requires the ability to generate a set of random samples from the robot's configuration space, and much recent research has concentrated on new methods to do this. In this paper, we present a sampling scheme that is based on the manipulability measure associated with a robot arm. Intuitively, manipulability characterizes the arm's freedom of motion for a given configuration. Thus, our approach is to densely sample those regions of the configuration space in which manipulability is low (and therefore, the robot has less dexterity), while sampling more sparsely those regions in which the manipulability is high. We have implemented our approach, and performed extensive evaluations using prototypical problems from the path planning literature. Our results show this new sampling scheme to be effective in generating PRMs that can solve a large range of path planning problems.

Published in:

IEEE Transactions on Robotics and Automation  (Volume:19 ,  Issue: 6 )