By Topic

Dynamic sliding PID control for tracking of robot manipulators: theory and experiments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
V. Parra-Vega ; Mechatronics Div.-CINVESTAV, Mexico City, Mexico ; S. Arimoto ; Yun-Hui Liu ; G. Hirzinger
more authors

For a class of robot arms, a proportional-derivative (PD) controller plus gravity compensation yields the global asymptotic stability for regulation tasks, and some proportional-integral-derivative (PID) controllers guarantee local regulation without gravity cancellation. However, these controllers cannot render asymptotic stability for tracking tasks. In this paper, a simple decentralized continuous sliding PID controller for tracking tasks that yields semiglobal stability of all closed-loop signals with exponential convergence of tracking errors is proposed. A dynamic sliding mode without reaching phase is enforced, and terminal attractors, as well as saturated ones, are considered. A comparative experimental study versus PD control, PID control, and adaptive control for a rigid robot arm validates our design.

Published in:

IEEE Transactions on Robotics and Automation  (Volume:19 ,  Issue: 6 )