Cart (Loading....) | Create Account
Close category search window
 

A 1.1 G MAC/s sub-word-parallel digital signal processor for wireless communication applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yuan-Hao Huang ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Hsi-Pin Ma ; Ming-Luen Liou ; Tzi-Dar Chiueh

This work proposes a communication digital signal processor (DSP) suitable for massive signal processing operations in orthogonal frequency division multiplexing (OFDM) and code-division multiple-access (CDMA) communication systems. The OFDM-based IEEE 802.11a wireless LAN transceiver and CDMA-based WCDMA uplink receiver are simulated to evaluate the computation requirements of future communication systems. The architecture of the communication digital signal processor is established according to the computational complexity of these simulations. The proposed architecture supports basic butterfly operations, single/double-precision and real- and complex-valued multiplication-and-accumulation (MAC), squared error computation, and add-compare-select (ACS) operation. This butterfly/complex MAC architecture can greatly enhance the execution efficiency of operations often found in communication applications. The processor chip is fabricated using a 0.35-μm n-well one-poly four-metal CMOS technology. The fabricated DSP chip reaches a speed of 1.1 G MAC/s when operating in the high-speed mode, and it achieves 4 M MAC/s/mW in the low-power mode.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:39 ,  Issue: 1 )

Date of Publication:

Jan. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.