By Topic

Maximum a-posteriori probability pitch tracking in noisy environments using harmonic model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tabrikian, J. ; Dept. of Electr. & Comput. Eng., Ben Gurion Univ. of the Negev, Beer Sheva, Israel ; Dubnov, S. ; Dickalov, Y.

Modern speech processing applications require operation on signal of interest that is contaminated by high level of noise. This situation calls for a greater robustness in estimation of the speech parameters, a task which is hard to achieve using standard speech models. In this paper, we present an optimal estimation procedure for sound signals (such as speech) that are modeled by harmonic sources. The harmonic model achieves more robust and accurate estimation of voiced speech parameters. Using maximum a posteriori probability framework, successful tracking of pitch parameters is possible in ultra low signal to noise conditions (as low as -15 dB). The performance of the method is evaluated using the Keele pitch detection database with realistic background noise. The results show best performance in comparison to other state-of-the-art pitch detectors. Application of the proposed algorithm in a simple speaker identification system shows significant improvement in the performance.

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:12 ,  Issue: 1 )