Cart (Loading....) | Create Account
Close category search window
 

Adaptive CFAR detection for clutter-edge heterogeneity using Bayesian inference

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Biao Chen ; Dept. of Electr. & Comput. Syst., Syracuse Univ., NY, USA ; Varshney, P.K. ; Michels, J.H.

Radar constant false alarm rate (CFAR) detection is addressed in this correspondence. Motivated by the frequently encountered problem of clutter-edge heterogeneity, we model the secondary data as a probability mixture and impose a hierarchical model for the inference problem. A two-stage CFAR detector structure is proposed. Empirical Bayesian inference is adopted in the first stage for training data selection followed by a CFAR processor using the identified homogeneous training set for target detection. One of the advantages of the proposed algorithm is its inherent adaptivity; i.e., the threshold setting is much less sensitive to the nonstationary environment compared with other standard CFAR procedures.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:39 ,  Issue: 4 )

Date of Publication:

Oct. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.