By Topic

Multitarget Bayes filtering via first-order multitarget moments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
R. P. S. Mahler ; Lockheed Martin NE & SS Tactical Syst., Eagan, MN, USA

The theoretically optimal approach to multisensor-multitarget detection, tracking, and identification is a suitable generalization of the recursive Bayes nonlinear filter. Even in single-target problems, this optimal filter is so computationally challenging that it must usually be approximated. Consequently, multitarget Bayes filtering will never be of practical interest without the development of drastic but principled approximation strategies. In single-target problems, the computationally fastest approximate filtering approach is the constant-gain Kalman filter. This filter propagates a first-order statistical moment - the posterior expectation - in the place of the posterior distribution. The purpose of this paper is to propose an analogous strategy for multitarget systems: propagation of a first-order statistical moment of the multitarget posterior. This moment, the probability hypothesis density (PHD), is the function whose integral in any region of state space is the expected number of targets in that region. We derive recursive Bayes filter equations for the PHD that account for multiple sensors, nonconstant probability of detection, Poisson false alarms, and appearance, spawning, and disappearance of targets. We also show that the PHD is a best-fit approximation of the multitarget posterior in an information-theoretic sense.

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:39 ,  Issue: 4 )