Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A methodology for the computation of an upper bound on noise current spectrum of CMOS switching activity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Nardi, A. ; California Univ., Berkeley, CA, USA ; Haibo Zeng ; Garrett, J.L. ; Daniel, L.
more authors

Currents injected by CMOS digital circuit blocks into the power grid and into the substrate of a system-on-a-chip may affect reliability and performance of other sensitive circuit blocks. To verify the correct operation of the system, an upper bound for the spectrum of the noise current has to be provided with respect to all possible transitions of the circuit inputs. The number of input transitions is exponential in the number of circuit inputs. In this paper, we present a novel approach for the computation of the upper bound that avoids the untractable exhaustive exploration of the entire space. Its computational complexity is indeed linear in the number of gates. Our approach requires CMOS standard cell libraries to be characterized for injected noise current. In this paper, we also present an approach for this characterization of CMOS standard cells. Experimental results have proven the accuracy of both the algorithm and the noise current models used for the library characterization.

Published in:

Computer Aided Design, 2003. ICCAD-2003. International Conference on

Date of Conference:

9-13 Nov. 2003