By Topic

Fast, accurate static analysis for fixed-point finite-precision effects in DSP designs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
C. F. Fang ; Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA ; R. A. Rutenbar ; Tsuhan Chen

Translating digital signal processing (DSP) software into its finite-precision hardware implementation is often a time-consuming task. We describe a new static analysis technique that can accurately analyze finite-precision effects arising from fixed-point implementations of DSP algorithms. The technique is based on recent interval representation methods from affine arithmetic, and the use of new probabilistic bounds. The resulting numerical error estimates are comparable to detailed statistical simulation, but achieve speedups of four to five orders of magnitude by avoiding actual bit-true simulation. We show error analysis results on both feed forward and feedback DSP kernels.

Published in:

Computer Aided Design, 2003. ICCAD-2003. International Conference on

Date of Conference:

9-13 Nov. 2003