Cart (Loading....) | Create Account
Close category search window
 

Prebreakdown and breakdown phenomena under uniform field in liquid nitrogen and comparison with mineral oil

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

This paper presents a study of breakdown and prebreakdown phenomena (streamers) in liquid nitrogen and mineral oil under quasi uniform electric field, under ac and impulse voltage. Streamers preceding breakdown are studied up to 0.5 MPa by high-speed visualization and recording of emitted light. In these conditions, breakdown in LN2 is mainly due to negative streamers, initiated at lower voltage than the corresponding positive voltage. Hydrostatic pressure has a limited effect on breakdown voltage, such as in mineral oil. It is shown that the ratio of impulse to ac breakdown voltage in LN2 is surprisingly low (close to 1), whereas in the same conditions ac breakdown voltage in mineral oil is lower than impulse breakdown voltage. Practical consequences for the design of HV insulation in superconducting systems are discussed.

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:10 ,  Issue: 6 )

Date of Publication:

Dec. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.