By Topic

Evolving real-time systems using hierarchical scheduling and concurrency analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
J. Regehr ; Sch. of Comput., Utah Univ., Salt Lake City, UT, USA ; A. Reid ; K. Webb ; M. Parker
more authors

We have developed a new way to look at real-time and embedded software: as a collection of execution environments created by a hierarchy of schedulers. Common schedulers include those than run interrupts, bottom-half handlers, threads, and events. We have created algorithms for deriving response times, scheduling overheads, and blocking terms for tasks in systems containing multiple execution environments. We have also created task scheduler logic, a formalism that permits checking systems for race conditions and other errors. Concurrency analysis of low-level software is challenging because there are typically several kinds of locks, such as thread mutexes and disabling interrupts, and groups of cooperating tasks may need to acquire some, all or none of the available types of locks to create correct software. Our high-level goal is to create systems that are evolvable: they are easier to modify in response to changing requirements than are systems created using traditional techniques. We have applied our approach to two case studies in evolving software for networked sensor nodes.

Published in:

Real-Time Systems Symposium, 2003. RTSS 2003. 24th IEEE

Date of Conference:

3-5 Dec. 2003