By Topic

Demonstration and system analysis of the HORNET architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
I. M. White ; Opt. Commun. Res. Lab., Stanford Univ., CA, USA ; Eric Shih-Tse Hu ; Yu-Li Hsueh ; K. Shrikhande
more authors

The HORNET architecture is a packet-over-wavelength-division-multiplexing ring network that utilizes fast-tunable packet transmitters and wavelength routing to enable it to scale cost-effectively to ultrahigh capacities. In this paper, we present the HORNET architecture and a novel control-channel-based media access control protocol. The survivability of the architecture is demonstrated with an experimental laboratory testbed. Mathematical analysis of the architecture shows that the wavelength routed network can scale to relatively large sizes ranging between 30 and 50 nodes, depending on the component performance. This is true even for arrangements that do not contain high-power optical amplifiers in every node.

Published in:

Journal of Lightwave Technology  (Volume:21 ,  Issue: 11 )