By Topic

A practical, decision-theoretic approach to multi-robot mapping and exploration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ko, J. ; Comput. Sci. & Eng., Washington Univ., Seattle, WA, USA ; Stewart, B. ; Fox, D. ; Konolige, K.
more authors

An important assumption underlying virtually all approaches to multi-robot exploration is prior knowledge about their relative locations. This is due to the fact that robots need to merge their maps so as to coordinate their exploration strategies. The key step in map merging is to estimate the relative locations of the individual robots. This paper presents a novel approach to multi-robot map merging under global uncertainty about the robot's relative locations. Our approach uses an adapted version of particle filters to estimate the position of one robot in the other robot's partial map. The risk of false-positive map matches is avoided by verifying match hypotheses using a rendezvous approach. We show how to seamlessly integrate this approach into a decision-theoretic multi-robot coordination strategy. The experiments show that our sample-based technique can reliably find good hypotheses for map matches. Furthermore, we present results obtained with two robots successfully merging their maps using the decision-theoretic rendezvous strategy.

Published in:

Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on  (Volume:4 )

Date of Conference:

27-31 Oct. 2003