We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Flexible binary space partitioning for robotic rescue

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Baltes, J. ; Dept. of Comput. Sci., Manitoba Univ., Winnipeg, Man., Canada ; Anderson, J.

In domains such as robotic rescue, robots must plan paths through environments that are complex and dynamic, and in which robots have only incomplete knowledge. This will normally require both diversions from planned paths as well as significant re-planning as events in the domain unfold and new information is acquired. In terms of a representation for path planning, these requirements place significant demands on efficiency and flexibility. This paper describes a method for flexible binary space partitioning designed to serve as a basis for path planning in uncertain dynamic domains such as robotic rescue. This approach is used in the 2003 version of the Keystone Fire Brigade a robotic rescue team. We describe the algorithm used, make comparisons to related approaches to path planning, and provide an empirical evaluation of an implementation of this approach.

Published in:

Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on  (Volume:4 )

Date of Conference:

27-31 Oct. 2003