By Topic

Optimized space vector switching sequences for multilevel inverters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Previous work has shown that space vector modulation and carrier modulation for two-level inverters achieve the same phase leg switching sequences when appropriate zero sequence offsets are added to the reference waveforms for carrier modulation. This paper presents a similar equivalence between the phase disposition (PD) carrier and space vector modulation strategies applied to diode clamped, cascaded N-level or hybrid multilevel inverters. By analysis of the time integral trajectory of the converter voltage, the paper shows that the optimal harmonic profile for a space vector modulator occurs when the two middle space vectors are centered in each switching cycle. The required zero sequence offset to achieve this centring for an equivalent carrier based modulator is then determined. The results can be applied to any multilevel converter topology without differentiation. Discontinuous behavior is also examined, with the space vector and carrier based modulation methods shown to similarly produce identical performance. Both simulation and experimental results are presented.

Published in:

IEEE Transactions on Power Electronics  (Volume:18 ,  Issue: 6 )