By Topic

A nonlinear dynamic S/H-ADC device model based on a modified Volterra series: identification procedure and commercial CAD tool implementation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Traverso, P.A. ; Dept. of Electron., Comput. Sci., & Syst., Bologna Univ., Italy ; Mirri, D. ; Pasini, G. ; Filicori, F.

A nonlinear, dynamic empirical model, based on a Volterra-like approach, was previously proposed by the authors for the time-oriented characterization of sample/hold (S/H) and analog-to-digital conversion (ADC) devices. In this paper, the experimental procedure for model parameter measurement is presented, as well as techniques devoted to the implementation of the model in the framework of the main commercial CAD tools for circuit analysis and design. Examples of simulations, performed both in the time and frequency domain on the model obtained for a commercial device, are proposed, which show the model's capability of pointing out the dynamic nonlinear effects in the S/H-ADC response.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:52 ,  Issue: 4 )